Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun

نویسندگان

  • Duncan H. Mackay
  • C. Richard DeVore
  • Spiro K. Antiochos
چکیده

In the recent paper of Antiochos (2013), a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines has been developed. We investigate this concept through global simulations of the Sun’s photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun. Subject headings: magnetic fields Sun:activity Sun:corona

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initiation of Coronal Mass Ejections in a Global Evolution Model

Loss of equilibrium of magnetic flux ropes is a leading candidate for the origin of solar coronal mass ejections (CMEs). The aim of this paper is to explore to what extent this mechanism can account for the initiation of CMEs in the global context. A simplified MHD model for the global coronal magnetic field evolution in response to flux emergence and shearing by large-scale surface motions is ...

متن کامل

Magnetic Helicity and Large Scale Magnetic Fields: A Primer

Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fiel...

متن کامل

Evolution and Distribution of Current Helicity in Full-sun Simulations

Current helicity quantifies the location of twisted and sheared non-potential structures in a magnetic field. We simulate the evolution of magnetic fields in the solar atmosphere in response to flux emergence and shearing by photospheric motions. In our global-scale simulation over many solar rotations the latitudinal distribution of current helicity develops a clear statistical pattern, matchi...

متن کامل

Magnetic Helicity and Energy Spectra of a Solar Active Region

We compute magnetic helicity and energy spectra of the solar active region NOAA 11158 during 11–15 February 2011 at 20 southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of magnetic helicity turns out to be predominantly positive at all ...

متن کامل

Magnetic Helicity Density and Its Flux in Weakly Inhomogeneous Turbulence

A gauge-invariant and hence physically meaningful definition of magnetic helicity density for random fields is proposed, using the Gauss linking formula, as the density of correlated field line linkages. This definition is applied to the random small-scale field in weakly inhomogeneous turbulence, whose correlation length is small compared with the scale on which the turbulence varies. For inho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013